Advanced Raman Spectroscopy of Methylammonium Lead Iodide: Development of a Non-destructive Characterisation Methodology
نویسندگان
چکیده
In recent years, there has been an impressively fast technological progress in the development of highly efficient lead halide perovskite solar cells. However, the stability of perovskite films and respective solar cells is still an open point of concern and calls for advanced characterization methods. In this work, we identify appropriate measurement conditions for a meaningful analysis of spin-coated absorber-grade perovskite thin films based on methylammonium (MA) lead iodide (MAPbI3) by Raman spectroscopy. The material under investigation and its derivates is the most commonly used for high efficiency devices in the literatures and has yielded working solar cell devices with efficiencies around 10% in our laboratory. We report highly detailed Raman spectra obtained with excitation at 532 nm and 633 nm and their deconvolution taking advantage of the simultaneous fitting of spectra obtained with varying excitation wavelengths. Finally, we propose a fast and contactless methodology based on Raman to probe composition variations and/or degradation of these perovskite thin films and discuss the potential of the presented technique as quality control and degradation monitoring tool in other organic-inorganic perovskite materials and complete solar cell devices.
منابع مشابه
Critical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CH3NH3PbI3) Perovskite Photochemistry.
Raman and photoluminescence (PL) spectroscopy are used to investigate dynamic structure-function relationships in methylammonium lead iodide (MAPbI3) perovskite. The intensity of the 150 cm-1 methylammonium (MA) librational Raman mode is found to be correlated with PL intensities in microstructures of MAPbI3. Because of the strong hydrogen bond between hydrogens in MA and iodine in the PbI6 per...
متن کاملNon-destructive Characterisation of Carbon Films
The availability of reliable characterisation tools for carbon films down to a few atomic layers’ thickness is one of the most decisive factors for technology development and production. In particular, non-destructive techniques are preferred. This chapter reviews the use of x-ray reflectivity, surface acoustic waves, and Raman spectroscopy to characterise carbon films in terms of density, thic...
متن کاملEfficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers
In this study, hybrid perovskite solar cells are fabricated using poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and poly(3-hexylthiophene-2,5-diyl) (P3HT) as dopant-free hole-transporting materials (HTMs), and two solution processes (one- and two-step methods, respectively) for preparing methylammonium lead iodide perovskite. By optimizing the concentrations and solvents o...
متن کاملIn situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure.
Near-ambient-pressure X-ray photoelectron spectroscopy enables the study of the reaction of in situ-prepared methylammonium lead iodide (MAPI) perovskite at realistic water vapour pressures for the first time. We show that MAPI decomposes directly to PbI2, HI and NH3 without formation of methylammonium iodide, allowing us to distinguish between alternative mechanisms for the atmospheric degrada...
متن کاملExciton and Free Charge Dynamics of Methylammonium Lead Iodide Perovskites Are Different in the Tetragonal and Orthorhombic Phases
The small exciton binding energy of perovskite suggests that the long-lived photoluminescence and slow recovery of the ground state bleaching of the tetragonal phase at room temperature results primarily from the decay of free charges rather than the decay of the initially created excitons. Here we demonstrate the ground state bleaching recovery of the orthorhombic phase of methylammonium lead ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016